If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=51=14x
We move all terms to the left:
x^2-(51)=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $
| 4n+8=n+26 | | 5(x+1)+2=6x | | (X+6)+(x+2+6)=3x+6 | | 8(6+7)=8x+7x | | 8y-3y+16=17 | | 22n=2n+9 | | 3/8x=21/4 | | 4x+8=1/2(8x+16) | | (6x-1)/4=x+5 | | 16c−7c=9 | | 425+x=850 | | (x/2)=x/7+9/2 | | 15x2+6x=0 | | 3y+2-2y=6 | | (2/x)+6=(5/2x)+(16/3 | | 22−3k=16 | | 58−w=18 | | 71=23+6j | | (8x+6)-1=9(x-6) | | x(x+3)=420 | | 26=(m/6)+5 | | 3+6=2x+14 | | 7-2x=15x-5x | | 2+(a/4)=-1 | | 5(y-4)=3(2y+3) | | 5(y-4)=3(y+3) | | 4(x-6)=5(x+2) | | 4(n+3)=5(n-2) | | -5=4(x+7) | | 4(5y-2))=48 | | 5x+200=10x | | 2(b-8)+8=8b-3 |